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Two hierarchical Monte Carlo methods for the generation of self-similar fractal 
random fields are compared and contrasted. The first technique, successive 
random addition (SRA), is currently popular in the physics community. Despite 
the intuitive appeal of SRA, rigorous mathematical reasoning reveals that SRA 
cannot be consistent with any stationary power-law Gaussian random field for 
any Hurst exponent; furthermore, there is an inherent ratio of largest to smallest 
putative scaling constant necessarily exceeding a factor of 2 for a wide range 
of Hurst exponents H, with 0.30 <H<0.85.  Thus, SRA is inconsistent with a 
stationary power-law fractal random field and would not be useful for problems 
that do not utilize additional spatial averaging of the velocity field. The second 
hierarchical method for fractal random fields has recently been introduced by 
two of the authors and relies on a suitable explicit multiwavelet expansion 
(MWE) with high-moment cancellation. This method is described briefly, 
including a demonstration that, unlike SRA, MWE is consistent with a station- 
ary power-law random field over many decades of scaling and has low variance. 

KEY WORDS: Fractal random fields; Monte Carlo methods; successive 
random addition. 

1. I N T R O D U C T I O N  

G e n e r a t i n g  r a n d o m  ve loc i ty  fields w h i c h  a re  f rac ta l  a n d  se l f -s imi lar  o v e r  

m a n y  scales  b y  M o n t e  C a r l o  m e t h o d s  t h a t  a re  accu ra t e ,  efficient,  a n d  h a v e  
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low variance is an important and challenging problem in diverse applica- 
tions such as turbulent diffusion, t~-s~ solute transport in groundwater/4) 
turbulent combustion, ts~ and random topography in statistical physics36~ 
In the simplest context of a zero mean stationary scalar Gaussian random 
field v(x) in a single space dimension, these fractal fields are completely 
characterized by the mean 

( v ( x ) )  = 0 

and the structure function 

( I v ( x )  -- v (y )]  2) = C o  i x - y l  2H (1) 

where 0 < H < 1 is the Hurst exponent. Here and below for any random 
variable w, ( w )  denotes the expected value of w. The fact that the structure 
function in (1) grows with the distance between the points of evaluation is 
a manifestation of the strong long-range correlation of the field v(. ) and 
this makes accurate and efficient Monte Carlo simulation of such fields a 
difficult task. The random field v(. ) has the scaling property 

v(x) = 121-H V(2X) (2) 

for any 2 :~ 0, where here and below equality between random fields means 
that they share the same finite-dimensional distribution functions. 

It is very natural to attempt to ensure both efficiency and scaling 
accuracy in a Monte Carlo simulation by approximating the fractal ran- 
dom field defined through (1) by an approximate random field VApp(X) 
involving a hierarchy of scales, i.e., 

MI 
VApp(X ) : ~ ,  6,,(2"'x) 2 .... H (3) 

m = M0 

Here M 0 and M~ are the largest and smallest scales and {~, , Im= 
0, _+ 1, +2,..} are independent identically disirib~uted random fields which 
are localized in space for computational efficiency. In the idealized situation 

-where truncation to a finite number of scales is ignored, i.e., M0 = - oo and 
M~ = + 0% any approximate hierarchical method automatically satisfies 
the scaling property 

< I VA,,(x) - VApp(y)l 2) = 2--~Y(IVAop(2x) -- VApo(2y)l 2) (4) 

which coincides for multiples of two with the scaling property in ( 1 ) for the 
fractal field v(x).  However, for a hierarchical method to be consistent with 
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the stationary fractal field v(x) requires a much stronger condition. We 
define the quantity D(x, y) by 

D(X, y)  : ([/)App(X) -- VApp(Y)l 2) (5) 

and K(x, y) by 

K(x, y) =V(x, y) Ix -Y1-2n  (6) 

In order for the hierarchical method from (3) to be consistent with the 
stationary fractal random field defined in (1) clearly K(x, y) should be 
roughly constant and at least tend to a constant as the finite truncation 
parameters Mo, M1 from (3) become infinite. 

One intuitively appealing Monte Carlo method for generating fractal 
random fields that is currently popular in the physics community is the 
method of successive random addition (SRA) introduced by Voss. ~6'7) 
Recently, Viecelli and Canfield ~8) have recommended using SRA for the 
simulation of stationary turbulent incompressible velocity fields. Section 2 
contains the main new results presented here. First, we show that SRA can 
be recast as a hierarchical method with the structure in (3). Then, we 
demonstrate with rigorous mathematical bounds that SRA cannot be 
consistent with the stationary Gaussian random field defined in (1) both 
for the idealized case of an infinite number of scales as well as the practical 
case with a finite number of scales. In both the finite and infinite situations, 
we show that the ratio of the maximum to the minimum value of K(x, y) 
from (6) necessarily exceeds 1 for all Hurst exponents H with 0 < H <  1 
and definitely exceeds 2 for all Hurst exponents H, with of 0.30 < H < 0.85. 
Thus, despite the scaling property in (4) and its intuitive attractiveness, 
SRA is inconsistent with a stationary fractal random field with necessarily 
large scatter in the values for K(x,y). In particular, this large range of 
values of K(x, y) makes SRA inappropriate for use in situations such as 
calculating turbulent diffusion where preserving stationarity is necessary 
because accurate values of a stationary velocity field are needed to validate 
preconstants for scaling laws for quantities such as pair dispersion. ~8-~~ For 
physical applications in which additional spatial averaging of the velocity 
field can be utilized, this scatter in the value of K(x, y) may not be so 
catastrophic. 

A second hierarchical method involving a suitable explicit multiwavelet 
expansion (MWE) with high-moment cancellation has been developed quite 
recently by two of the authors (9-11~ and applied to turbulent diffusion with 
random fractal velocity fields. In Section 3, we briefly describe this method 
and demonstrate both the consistency of this algorithm in generating 
approximations to the fractal random field v(x) defined through ( 1 ) as well 
as the low variance of the method when finite sample sizes are included. 



720 E l l i o t t  e t  at. 

For  example, with the value of the Hurst  exponent  H =  1/3, which corre- 
sponds to the K o l m o g o r o v  Spectrum, 12 decades of  the correct scaling 
behavior  in (1) with the constant  prefactor accurate to 6 % are generated 
with only 100 realizations and in an economical  fashion so that  less than 
2000 active computa t ional  elements are needed in each realization. Further-  
more,  through r andom plane waves, the M W E  method generalizes readily 
to higher dimensions with similar (spectacular) computa t ional  capabilities 
regarding both the velocity structure function I'~ and pair  dispersion in 
turbulent diffusion/l~J We refer the interested reader to ref. 9 for a detailed 
description and validation of the wavelet Monte  Carlo method  in a single 
space dimension and to refs. 10 and 11 for a detailed description of the 
mult idimensional  algori thm as well as applications in turbulent  diffusion. 

2. SUCCESSIVE R A N D O M  ADDIT ION AS A HIERARCHICAL 
METHOD 

We begin by formulating the SRA algori thm from refs. 6 and 7 as a 
hierarchical method as described in (3) above. Successive r andom addit ion 
constructs a field by dyadic expansion. By definition, a dyadic rat ional  
number  x satisfies x = 2-"'1l for some integers m and 17, the octave and the 
translate, respectively. For  each octave m, successive r a n d o m  addition 
constructs a piecewise linear field v,,(. ). First, the method assigns an inde- 
pendent s tandard Gaussian r andom variable as the value of the field v,,(x) 
at x = n for n = 0, + 1, ___ 2 ..... Next,  the method extends v,,(. ) to all other 
points by linear interpolation. Finally, it scales v,,(. ) to 2-"'1%m(2 m" ) and 
sums from m = Mo to m = M1 to produce the field VApp(.) determined by 
the equations 

~(x) = g(Lx_])(1 - [ x ] )  + g ( L x / +  1 ) [x ]  
M, (7) 

VApr,(X)= ~ ~,,,(2"'x)2 .... n 
m = M 0 '  

Here L x l  is the greatest integer less than x, [ x ]  = x - L x _ l  is the fractional 
part  of x, while { g(n) I n = 0, + 1, ___ 2,...} is a set of  independent and identi- 
cally distributed Gaussian r andom variables and { ~,,,( �9 ) I m = 0, ___ 1, __+ 2,... } 
is a set of  independent realizations of  f( .) .  The structure function of the 
successive r andom addition field is defined in terms of the structure func- 
tions for the piecewise linear fields as follows: 

D(x, y) = ( [ VApp(X) -- VApp(y) ] 2) 
M I  

= ~. /3(2"x, 2"'y) 2 - - " ' u  (8) 
m = MO 
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with 

Z3(x, y) = ([V(x) - V(y)] ~) 

Of course, the structure function of the field ~( - ) is somewhat complicated. 
We calculate explicitly that for SRA/3(x,  y) is given by 

( 2 ( x - y )  2 
) ( 1 _  [ x ] ) 2 + ( [ x ] _  1 + [ y ] ) 2 +  [y ]2  

/ 3 ( x , y ) =  ) ( 1 - [ y ] ) Z + ( [ y ] -  l + [ x ] ) Z +  [x]'- 
/ ( 1 -  [x]) 2+ [x]2+(1- [y])Z+ [y]2 

where [x ]  = x - L x ] .  

if L x / - L y / = 0  

if L y / - L x J  = 1 

if L x / - k y J =  1 

if I L x d - k y J l  > 1 

(9) 

2.1. Inconsistency of SRA with Infinitely Many Scales 

For simplicity in exposition, we first consider SRA defined in (7) in the 
idealized case where M o = - o o  and MI = + oo so that there are an infinite 
number of octaves present. In this case our first argument for the incon- 
sistency of SRA is elementary and straightforward, but also serves as a 
prototype for the more complex reasoning needed for the case with finitely 
many octaves developed in the next subsection. 

To demonstrate the inconsistency of SRA, we need to show that the 
function K(x,y) defined in (6) is not a constant. We define an infinite 
sequence of pairs of points (xp, yp) for p = 1, 2, 3 .... given by 

x p = � 8 9  -p, y v = � 8 9  (10) 

We explicitly calculate the numbers K(xp, yp) = Kp utilizing the formulas in 
(8) and (9) with Mo = - o o  and MI = + m  to obtain 

0 

Kv=2.22''-p~'-H, ~.. 22 ' ' ` ' - " )  

p - - I  

+ �89 y. 2-'-.,-H~ 
m =  l 

+2-22 'p - I )H ~" 2 -2"'H (11) 
m = p  - -  I 

The interested reader can check that this sequence is monotone decreasing 
with 

K1 =211 + (4 { l - H I -  1) -1 ] +2(4  H -  1) - l  (12) 
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and the limit as p tends to infinity Ko~ given by 

Ko~ =�89 + ( 4  ( t - m -  1) - l ]  + 2 ( 4 n - - 1 )  -I  (13) 

For a Hurst exponent H with 0 < H < 1 we trivially have K, > Ko~ and 
the ratio K~/Ko~ as a function of H is graphed in Fig. 1; the inequality 
K~ > K~ rigorously guarantees that SRA with infinitely many scales is not 
consistent with a stationary power-law random field as defined in (I)  
above. By a calculation similar to the one in Eq. (11), it can be shown that 
K(xv, 1/2)=Ki  for all p. A comparison of this result with the result in (13) 
demonstrates that the function K(x,y) has a discontinuity of at least 
211 + ( 4  ( t - m -  1) - t  ] at (I/2, 1/2); indeed, by scaling it can be shown that 
the same discontinuity occurs at every dyadic rational number on the 
diagonal. The presence of these large, dense (and, hence, unavoidable) 
discontinuities in K further indicates the inconsistency of SRA. 

3.5-  

3 .0 -  

2 .5 -  

2 .0-  

1.fi- 

1.0 
012 01, 016 01s 

Fig. 1. The  ra t io  o f  KI to  K:~, versus the H u r s t  e x p o n e n t  H.  
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Nevertheless, it is possible to show that the inconsistency of SRA is, 
at least, bounded. With further tedious calculations we can establish that 

K I = M =  m a x  K(x,y) 
( x , y ) ~ i R  2 

and also that (14) 

0 < L =  min K(x,y) 
( x , y ) ~ R  2 

is finite for this idealized situation for SRA with infinitely many scales; 
clearly, we have L ~< K~ < K1 = M as bounds. We omit the cumbersome 
proof of the facts claimed in (14) since they are not essential for the main 
results presented in this paper. 

2.2. Inconsistency of SRA w i t h  Finitely M a n y  Scales 

One criticism of the argument just presented in Section 2.1 is the fact 
that it relies on the use of an infinite number of scales in SRA, so that 
perhaps the bounds for inconsistency utilizing K~ and K~  are unduly 
pessimistic when M 0 and M] in (7) are finite. Here, through more 
sophisticated but similar arguments, we establish that quantitatively similar 
bounds are valid and imply the inconsistency of SRA with finitely many 
scales. 

To avoid spurious effects with very small numbers of octaves in the 
sum in (7), we fix a minimum number of octaves L +  1 and consider SRA 
with finitely many scales so that in (7) 

Mo = -p, M~=L+q, p,q>~O (15) 

The reader can think of L as some small fixed number of octaves, i.e., L 
satisfies 5 ~< L ~< 10. Our strategy will be to vary p and q with p, q ~> 0 so 
that we minimize the range of the function K(x, y) defined in (6); thus, we 
attempt to find the SRA algorithm with finitely many scales which is the 
"best candidate" to be consistent with the stationary fractal random field 
characterized by .(1). For a given p and q we denote by Kpq(X, y) the 
function defined in (6) by the finite truncation of SRA described in (7) 
and (15). 

As in Section 2.1, to investigate the range of Kpq(X, y) we restrict our 
attention to the value of this function on a finite collection of points. In 
particular we consider only x and y, which are distinct points in the unit 
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interval and which are integer multiples of 2 -L. This assumption greatly. 
simplifies the application of formulas (8) and (9), giving 

L + q  

D(x, y)= ~ D(2"'x, 2"'y) 2 -2"ar 
m ~ --p 

- I  L + q  

= ~, L)(x,Y) 2 2 " " ' - m +  E 
m= --p re=L+ 1 

L 
+ ~, /3(2"'x, 2"'y) 2-2"/4 

m = 0 

/)(2Lx, 2/'y) 2-2, ,n 

(16) 

In the preceding equation, the summation over m < 0 becomes a geometric 
series because 11_2"x_] - 12"),5[ = 0, so that b(2"'x, 2"'3,) = 2(2"'x - 2"y)'- 
according to formula (9). Also, the summation over m>L becomes a 
geometric series because 2"x and 2"'y are integers which differ in 
magnitude by at least 2, so that D(2"'x, 2my)= 2 according to formula (9). 
Because these two terms are geometric series, we can evaluate Kpq(X, y) 
even when p or q is infinite. We further restrict our attention to 
(x, y) ~ { [0, 1/2) x [ 1/2, 1 )}, so we are left with 

SL=  {[0, �89 [�89 1)} c~ {Z2-L} 2 (17) 

i.e., the set of points in [0, 1/2) x [ 1/2, 1) which have coordinates which are 
integer multiples of 2 -L. We will now show that the range of the function 
Kpq(X, y) on SL is unacceptably large by finding a rigorous lower bound Q' 
for this range. 

If we define 

Km~X= sup Kpq(X,y) (18a) 
(x, yJ~SL 

Kpqmin = i n f  g p q ( X , y )  (18b) 
( x .  y ) ~ S L  

m a x  r a i n  then we seek a lower bound on the ratio of Kpq to  Kpq as p and q vary. 
According to formula (16), Kpq(X, y) is increasing and convergent in p and 

m a x  q. Therefore, Kpq and Kpmiq n are both increasing and convergent in p and 
q. This fact facilitates a rigorous estimate of the minimum of the desired 
ratio by reducing an infinite minimization problem to a finite minimization 
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problem. We begin by dividing the problem of estimating the minimum of 
the ratio into four parts, 

K _ ~  
Q =  inf ~ (19a) 

p, q>~O gpq  

Q = QI A Q2 A Qs ^ Q4 (19b) 

Q1-- min Kp%ax (19c) 
O<~p,q<~n Kpq n 

Q2 = min inf Kpqax (19d) 
O~p<~n n<~q g p q  n 

Q3 = min inf Kpq= (19e) 
min O<~q<~n n<~p gpq  

04 = inf Kmax (19f) 
-< min n ~p, q Kpq 

Here a ^ b is the minimum of a and b. Term Q~ involves a finite search, 
but the other three terms involve minimization over an infinite set. There- 

max fore, we use the monotonicity of Kpq and Kpq n to obtain a lower bound 
on the ratio involving a finite set of cases. Thus, we have 

Q>~Q' 

O'= 01 ^ Q; ^ 0'3 ^ Q'4 

Q ] =  rain Kmax (20a) 
O~p, q<~n gp~  n 

g max 

Q~ = rain P" (20b) 
O<<.p<n Kprr~ n 

max K nq 
Q~= min groin (20c) 

O<.q<~n r 

K max 

Q~=- m'i--~' (20d) 
K o o o o  

max max and max a r e  Below we will choose an n large enough so that Kin, , Knq , Knn 

near their limiting values for 0 ~<p, q ~< n. 
The comparison problem in (20) for the ratio Q' can be evaluated 

numerically for a fixed H and L in a straightforward fashion by utilizing 

822/81/3--4-14 
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m a x  ra in T a b l e  I. E f f e c t  of  V a r y i n g  p and  q on Kpq /Kpq f o r  
H = 1 / 3 ,  L=8,  and n = 1 0  

p q=O q=l  q=2 q=lO q = ~  

0 3.014 3.072 3.109 3.147 3.147 
1 2.251 2.270 2.284 2.311 2.311 
2 2.188 2.183 2.190 2.206 2.206 

I0 2.173 2.126 2.108 2.106 2.106 
oo 2.177 2.128 2.109 2.104 2.104 

(16), since Q' involves a search through only a finite number  of cases, yet 
provides a rigorous lower bound  on the ratio. We illustrate the results of 
this procedure for the Hurst  exponent  H =  1/3, L = 8, and n = 10. Table I 

m a x  m i n  gives the ratio of gpq  to Kpq . In this table, p is the row number  and q 
is the column number ,  while the dots indicate an omitted range of indices. 

2 . 4 -  

2 . 2 -  

2 . 0 -  

1 . 8 -  

1 . 6 -  

1 . 4 -  

H=1/3 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Fig. 2. The quantities Q' (solid line) . . . .  in and K ~o-~/K ~o~:i (diamonds) versus the Hurst exponent H. 
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We observe that no ratio is ever smaller than 2.1, so that SRA with finitely 
many scales is inconsistent with a stationary fractal random field and 
necessarily has large fluctuations in the prefactor exceeding 2.1 in size. 

The ratio Kmo~ax/K rain denotes the range of K(x, y) over the set SL 
defined in (17) with infinitely many scales. The finite set SL differs from the 
infinite set used in Section 2.1, so that the resulting estimate of the ratio is 
different. We used the numerical procedure from the previous paragraph to 
calculate Q' from (20) for the values H--0 .1 ,  0.2, 0.3 ..... 0.9 and H - -  I/3; we 
also calculated K ~  with L = 8. In Fig. 2, the solid line is the graph of Q' 
through these points, while the ratio . . . .  in K oo~/Ko~ is depicted by diamonds. 
The lower bound extracted from Q' in Fig. 2 indicates that SRA with a 
finite number of scales is inconsistent with a ratio exceeding 1.8 for most 
H in (0, 1). Finally, the close agreement between the line plot and the 
diamond plot in Fig. 2 indicates that the use of a finite number of truncated 
scales in SRA does not improve appreciably the inherent inconsistency of 
SRA with an infinite number of scales as demonstrated earlier in Section 2.1. 

We emphasize that Q' is a lower bound for fluctuations in SRA, so 
that even the results reported here might be optimistic. For a fixed H and 
L, there are no parameters other than p and q which can be adjusted in an 
SRA simulation, so that any use of SRA for generating stationary fractal 
fields must inherently involve the large errors documented here. 

2.3. H is tograms for  the  C o e f f i c i e n t  D is t r ibut ion  in SRA 

One conceivable objection to the analysis presented in Sections 2.1 
and 2.2 is that those are extreme cases and for "most values of (x, y)" the 
function K(x, y) defined in (6) is "nearly constant." Here we demonstrate 
that the above scenario is not valid, by calculating histograms for the coef- 
ficient distribution in SRA. For simplicity in exposition, we consider SRA 
with an infinite number of scales in (7), i.e., M o = - o o  and M~ = +oo. 
When there are an infinite number of scales, it is a simple exercise to 
deduce that the distribution of values of the coefficient K(x, y) over the 
region 

S={(x,y)  lO~x <l ~<y<2} 

is sufficient to defermine the complete distribution of values over R z. 
With M defined in (14), in Fig. 3 we present a histogram of the values 

of the normalized function K(x, y)/M on the unit square S with a 32 x 32 
discretization and for the Hurst exponents H--0 .2 ,  0.4, 0.6, and 0.8. The 
area under the histogram between two points v~ and v2 reflects the area of 
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o12 oi, ' 0.6 
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I 
0.8 1.0 

s-~ 

i i ' ' 0 2  0 4  0,6 0.B 1.0 

Fig. 3. Coefficient K(x, 3') distributions for SRA with (A) H =  0.2, (B) H =  0.4, (C) H =  0.6, 
and (D) H=0 .8 .  

S for which v~ <~ K(x, y ) / M ~  v2. For each of these four cases, the distribu- 
tion of the coefficient values is rather broad and does not lie in a narrow 
range. Furthermore, nothing can be done with SRA to reduce this range. 

3. H I E R A R C H I C A L  M E T H O D S  B A S E D  O N  M U L T I W A V E L E T  
E X P A N S I O N  

First, we briefly summarize some of the main steps in designing these 
hierarchical methods and refer the interested reader to ref. 9 for complete 
details regarding the implementation. The starting point for designing these 
methods is the representation of the random fractal velocity field v(. ) 
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characterized through (1) as a stochastic integral given by a moving 
average with respect to white noise, ~9~ i.e., 

v(x) = f I x - y l  H-l/2 dW(y) (21) 

where dW(y) is Gaussian white noise. The second step is an exact result 
involving expansion of white noise by a general L2-0rthonormal basis, i.e., 
if { ~bk(y) } ~=1 is a complete orthonormal basis for L2(R), then 

dW(y)=~,~k(y)Nk (22) 
k 

where Nk are standard independent identically distributed Gaussian random 
variables with mean zero and variance one. Inserting (22) into (21), we 
obtain the identity 

v(x) = ~ Nk f Ix _ y l n - v 2  tpk(y ) dy (23) 
k 

To obtain a general hierarchical method which yields an exact representa- 
tion of v(x), we choose the orthonormal basis in the hierarchical form ~9) 

~b k( y ) = fb~,~ = 2"/2 ~ (  2"'y - n) (24) 

where m and 17 are arbitrary integers and {~b~(y)} ~=1 is a fixed finite set 
of functions. By inserting the functions in (24) into (23), we obtain the 
general exact hierarchical expansion ~9) 

with 

v(x) = ~. ~,,(2"x) 2 - " n  (25) 
m ~  - - o o  

~7.,(x) = ~. ~. G~r(x-n)N,,~, ,  (26) 
I I  ~ - -  OG t~r = l 

and {G~(x)} is the finite family of explicit functions given by 

f 
o o  

G'~(x) = I x -  yl ~ -  u2 qUa(y) dy (27) 

for ~ = 1 ..... r. The representation of the stationary fractal random field v(x) 
through the hierarchical method described in (25)-(27) is exact for any 
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choice of a complete orthonormal basis for L2(R) defined through {~b,,~,} 
from (24). In particular, in the limit of an infinite number of scales, unlike 
the SRA algorithm discussed in Section 2, these hierarchical methods in 
(25)-(27) are always stationary, so that K(x, y) in (6) is identically con- 
stant. 

On the other hand, one of the intuitively appearing features of the 
SRA algorithm described in (7) and (8) is that it is extremely localized 
through linear interpolation, so that there is the possibility of great com- 
putational efficiency. In order to convert the hierarchical expansion in 
(25)-(27) into a practical efficient numerical method, it is obviously impor- 
tant to pick functions {~b"~(y)}~=l to localize the convolutions G~(x) in 
(27) while still having {~b,,~} from (24) generate a complete orthonormal 
basis for L2(R). The way to achieve this is developed in detail in ref. 9, 
where the Alpert-Rokhrin multiwavelet basis is utilized. The Alpert- 
Rokhlin multiwavelet I ~21 

{q~ I a =  1,2 ..... 3} 

is a set of z functions which are supported on the interval [0, 1], are 
piecewise polynomial on [0, 1/2] and on [1/2, 1], and satisfy the moment 
cancellation conditions 

f~ xP~'~(x) dx=O, p=O, 1 ..... r -  1 (28) 

In addition, the set of functions {~b,,~ defined in (24) by translation and 
scaling are a complete orthonormal basis for L2(R). A concise summary of 
the Alpert-Rokhlin wavelets including explicit formulas is presented in 
ref. 9. Clearly, the moment cancellation property m (28) for a large enough 
value of r guarantees that G~(x) from (27) is highly localized so that the 
sum over the translates n in (26) for a fixed octave m converges rapidly. ~9~ 
In practice, the value r = 4  is sufficient for accurate simulation for the 
Hurst exponent H - 1 / 3  corresponding to the Kolmogorov spectrum. ~9-~1 
In practice, we limit the algorithm in (25)-(27) to a finite number of scales 
M and we limit the translates ~b,,~], to those with support within a fixed dis- 
tance b from x through rigorous energy criteria/9~ Through these judicious 
choices, properties such as stationarity of the field are very nearly preserved. 
The resulting hierarchical algorithm is given by 

M - - I  

V(X)= ~ "b n'" 2 - ' ~  v,,(2 x) (29) 
m~O 



Hierarchical M C  Methods  for  Fractal Random Fields 731 

Fig. 4. 
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Coefficient K(x,y) distributions for MWE with (A) H=0.2 ,  (B) H = 0.4, (C) H=0.6 ,  
and (D) H=0.8.  In all cases r = 8 ,  b =  15, and the number of scales is 40. 

with 

~,,(x)= ~ L.,-j+b G"'(x-n) N,,1% (30) 
a = l  . = L x J - b  

(The actual algorithm implemented below involves the use of Legendre 
polynomials at the largest scale, m = 0, but this modification is irrelevant 
for our treatment here/TM) 
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Fig. 5. Coefficient K(x,y) distributions with H=I/3 (Kolmogorov) for SRA (left) and 
MWE (right). For MWE, r=4, b=5, and the number of scales is 40. 

3.1. Numer ica l  Results for the M W E  M e t h o d  

In Figure 4 we show the histograms for Hurst exponents H =  0.2, 0.4, 
0.6, and 0.8 for the range of the constant K(x, y) in (6) computed through 
the finite-scale, wavelet band-limited, hierarchical algorithm defined in 
(29) and (30) with M = 4 0  scales, a wavelet order 3 = 8 ,  and bandwidth 
b = 15. The histograms are computed in the same fashion as described in 
Section 2.3 for SRA. As in Section 2.3, these histograms are computed 
without the effects of sampling errors in the Gaussian random variables and 
without spatial averaging for any sort. The histograms for H - -  0.4, 0.6, 0.8 all 
are highly localized and confined to a very narrow width with only a few 
percent variation. The histogram for the case H = 0.2 is somewhat broader, 
but is still confined to a much narrower region when compared to any of 
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(B) I00, and (C) 1000 realizations. Each simulated value is plotted with a diamond; the true 
expected value is plotted with a solid line. 
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the cases of SRA presented earlier in Fig. 3. For direct comparison, in 
Fig. 5 we present two different histograms for the range of K(x,  y)  for the 
Hurst exponent H =  1/3 corresponding to the Kolmogorov value. For the 
MWE method we used M - - 4 0  scales, the wavelet order r - - 4 ,  and the 
bandwidth b = 5, while we compared this with the histogram for SRA with 
infinitely many scales. The histogram with the narrow spike in coefficient 
distribution corresponds to MWE, while the broad band histogram for the 
coefficient distribution in Fig. 5 is generated by the SRA algorithm. 

The parameters for the MWE method with M = 40, r = 4, and b = 5 
are essentially those utilized in refs. 10 and 11 for the generation of fractal 
fields in two space dimensions with many decades of scaling ~ ~ol and for tur- 
bulent diffusion with fractal velocity fieldsJ I~1 Finally, here we demonstrate 
the small stochastic errors and low variance with the MWE algorithm with 
these practical parameters in the simpler context of a single space dimen- 
sion. We present the numerically computed structure function from (1) via 
the MWE algorithm with the above parameters for a finite sample size with 
10, 100, and 1000 realizations, respectively, in Figs. 6A-C. For all three 
sample sizes, including the one with 10 realizations, the power law fit is 
0.66 over 12 decades of scaling. Furthermore, in the last case with 1000 
realizations, the constant prefactor is accurate to less than 8 % over the 
entire 12 decades of scaling. Nevertheless, less than 2500 active computa- 
tional elements are needed to generate each realization. The interested 
reader might want to compare further the results in ref. 10 for MWE in two 
dimensions with those via SRA described in ref. 8. 

4. C O N C L U D I N G  R E M A R K S  

It is worthwhile to briefly mention some other recent work on the 
generation of self-similar random fields in order to put the authors'  current 
work in proper perspective. This will be followed by a summary of the 
results presented here. The method proposed by Eggers and Grossman is 
based upon a hierarchical-like superposition of eddies. 1141 However, this 
technique does not preserve stationarity without spatial averaging, 1~4~ 
making it inappropriate for the statistical issues considered here, which are 
geared toward high numerical accuracy with low variance for the velocity 
field for use in validating fundamental constants in turbulent diffusion, pair 
dispersion, etc. In Juneja et al. ~51 a family of schemes is introduced that are 
modifications of an SRA-like approach. The goal of this family of schemes 
is to simulate more turbulence-like fields that have increments with non- 
zero skewness and that include small-scale intermittencyJ ~5~ Attempts to 
introduce such features in a simulated field are certainty interesting and 
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important, but, as noted earlier, are not the goal of our current work. 
Benzi et al. propose the use of wavelets to generate random fields. (16) The 
choice of wavelets in ref. 16, the Mexican hat function, suffers from many 
problems when compared with the Alpert-Rokhlin multiwavelets used here 
and in refs. 9-11. The Mexican hat function is not compactly supported, 
does not cancel many moments, and does not allow the convolutions G ~* 
to be computed exactly. As was demonstrated explicitly and described in 
detail in ref. 9, these features are all of utmost importance in designing an 
efficient and accurate wavelet-based approach to simulation for random 
velocity fields with a range of statistical scales spanning many decades. 

We have compared and contrasted two very different but attractive 
hierarchical methods for the simulation of fractal random fields, SRA and 
MWE. In Section 2, we have given conclusive and mathematically rigorous 
evidence that despite its intuitive appeal, the SRA algorithm cannot be 
consistent with any stationary power-law fractal random field. On the 
other hand, in Section 3, we have demonstrated the consistency, efficiency, 
and low variance of appropriate MWE methods for simulating stationary 
fractal random fields. These methods have been developed recently by two 
of the authors 19"1~ and are being applied elsewhere to problems in 
turbulent diffusion with fractal fields. (9" 11) 
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